
GAUSSIAN SCENES: POSE-FREE SPARSE-VIEW SCENE

RECONSTRUCTION USING DEPTH-ENHANCED DIFFU-

SION PRIORS

Soumava Paul, Prakhar Kaushik, Alan Yuille
CCVL, Johns Hopkins University
soumava2016@gmail.com, {pkaushi1, ayuille}@jhu.edu

ABSTRACT

In this work, we introduce a generative approach for pose-free reconstruction
of 360◦ scenes from a limited number of uncalibrated 2D images. Pose-free
scene reconstruction from incomplete, unposed observations is usually regularized
with depth estimation or 3D foundational priors. While recent advances have
enabled sparse-view reconstruction of unbounded scenes with known camera
poses using view-conditioned diffusion priors, these methods cannot be directly
adapted for the pose-free setting when ground truth COLMAP poses are not
available during evaluation. To address this, we propose an RGBD diffusion
model designed to inpaint missing details and remove artifacts in novel view
renders and depth maps of a 3D scene. We introduce context and geometry
conditioning using FiLM modulation layers as a lightweight alternative to cross-
attention and also propose a novel confidence measure for Gaussian representations
to allow for better detection of these artifacts. By progressively integrating these
novel views in a Gaussian-SLAM-inspired process, we achieve a multi-view-
consistent Gaussian representation. Evaluations on the MipNeRF360 and DL3DV-
10K benchmark dataset demonstrate that our method surpasses existing pose-free
techniques and performs competitively with state-of-the-art posed reconstruction
methods in complex 360◦ scenes. Our code and datasets will be open-sourced upon
acceptance.

1 INTRODUCTION

Reconstructing high-quality 3D scenes from sparse images remains a fundamental challenge in
computer vision. While recent methods employ various priors to stabilize NeRFs (Mildenhall et al.,
2020) or Gaussian splats (Kerbl et al., 2023) in under-constrained scenarios, they typically require
accurate camera parameters derived from dense observations—a restrictive assumption for real-world
applications. Pose estimation from sparse views is inherently challenging; both traditional Structure
from Motion and recent foundational models (Wang et al., 2024; Leroy et al., 2024) struggle with
insufficient matching features. Current pose-free 3DGS approaches integrate monocular depth (Ranftl
et al., 2020), semantic segmentation (Kirillov et al., 2023), or 3D priors (Wang et al., 2024), but
fail on complex 360◦ scenes with sparse coverage, highlighting the need for additional generative
regularization.

Despite numerous attempts (Deng et al., 2022; Roessle et al., 2022; Li et al., 2024; Xiong et al., 2023;
Zhu et al., 2023; Chung et al., 2023; Wang et al., 2023a; Jain et al., 2021; Niemeyer et al., 2022;
Wynn and Turmukhambetov, 2023), only COGS Jiang et al. (2024) and InstantSplat (Fan et al., 2024)
address sparse view synthesis without precomputed cameras. While they reduce artifacts and blur,
they lack generative capacity for complete 360◦ reconstruction. Full scene reconstruction requires
robust priors from powerful diffusion models (Nichol et al., 2022; Ramesh et al., 2022; Saharia et al.,
2022; Rombach et al., 2022) encoding common 3D structures. Recent methods (Liu et al., 2023;
Sargent et al., 2024; Wu et al., 2024; Gao* et al., 2024; Blattmann et al., 2023) incorporate view
conditioning for realistic extrapolation but depend on accurate poses. Only Gaussian Object (Yang
et al., 2024), iFusion (Wu et al., 2023), and UpFusion (Nagoor Kani et al., 2024) provide pose-free
generative solutions, yet target object rather than scene reconstruction.
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We present GScenes, an efficient approach using 3D foundational and RGBD diffusion priors for
pose-free sparse-view reconstruction of complex 360◦ scenes. We first estimate a point cloud
and approximate camera parameters using MASt3R Leroy et al. (2024), then jointly optimize
Gaussians and cameras with 3DGS. Novel views generated from a B-spline trajectory contain
artifacts that our diffusion prior refines to further optimize the scene. We condition a Stable Diffusion
UNet Rombach et al. (2022) on estimated cameras, context, 3DGS renders, depth maps, and a
confidence map capturing artifacts. Despite using weaker generative priors than pose-dependent
methods, we demonstrate competitive performance against ReconFusion (Wu et al., 2024) and
CAT3D (Gao* et al., 2024) while outperforming other techniques without requiring million-scale
multi-view data or extensive compute resources.

Our contributions include:

• An image-to-image RGBD diffusion model for synthesizing plausible novel views from
sparse unposed images, using lightweight FiLM modulation Perez et al. (2018) instead of
cross-attention

• A confidence measure to detect artifacts in novel view renders, guiding our diffusion model
toward effective rectification

• Integration of diffusion priors with MASt3R’s geometry prior, enabling efficient scene
reconstruction previously requiring 3D-aware video diffusion

• Superior performance compared to recent regularization and generative prior-based ap-
proaches for large 3D scene reconstruction

See Appendix for further discussion and Related Works.

2 METHOD
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Figure 1: Overview of GScenes. We render 3D Gaussians fitted to our sparse set of M views
from a novel viewpoint. The resulting render and depth map have missing regions and Gaussian
artifacts, which are rectified by an RGBD image-to-image diffusion model. This then acts as pseudo
ground truth to spawn and update 3D Gaussians and satisfy the new view constraints. This process is
repeated for several novel views spanning the 360◦ scene until the representation becomes multi-view
consistent.

This section begins with an overview of our pipeline in Sec 2.1, detailing our approach for recon-
structing a 3D scene from a sparse set of uncalibrated 2D images. In Sec 2.1, we describe how we
initialize a Gaussian point cloud using MASt3R and 3DGS to provide a coarse 3D representation.
Sec 2.2 introduces our RGBD image-to-image diffusion model, which refines rendered novel views
by correcting artifacts and filling missing regions. In Sec 2.3, we propose a confidence measure
based on cumulative transmittance and Gaussian density to guide the diffusion model in identifying
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unreliable regions in novel-view renders. Sec 2.4 outlines our synthetic dataset creation pipeline,
which enables training the diffusion model with high-quality RGBD supervision. Sec 2.5 details our
depth-augmented autoencoder finetuning process to improve latent-space encoding for RGBD data.
Sec 2.5.1 explains the fine-tuning of our UNet with synthesized training data to generate photorealistic
and geometrically consistent novel views. In Sec 2.5.2, we describe the inference process of our
diffusion model, where novel views are synthesized using RGBD renders and confidence maps.
Sec 2.6 presents our iterative 3D Gaussian optimization strategy that progressively integrates novel
view constraints into the scene representation. Finally, Sec 2.7 describes a test-time pose alignment
step that refines camera poses to align the rendered image with a given test view before evaluation.

2.1 ALGORITHM OVERVIEW

Problem Setup Given a set of M images I = {I1, I2, . . . , IM} of an underlying 3D scene with
unknown intrinsics and extrinsics, our goal is to reconstruct the 3D scene, estimate the camera poses
of a monocular camera at the M training views, and synthesize novel views at evaluation time given
by N unseen test images {IM+1, IM+2, . . . , IM+N}.

Algorithm 1 GScenes Algorithm

Require: Sparse input image set I = {I1, I2, . . . IM}
Ensure: Set of 3D Gaussians G and camera poses π = {π1, π2, . . . πM}

1: Î ← I
2: G ← Optimize 3DGS with MASt3r point cloud for 1k iterations
3: for N iterations do
4: π ← Sample novel camera pose.
5: I,D← Rπ(G) - Render from camera π
6: I← Refine(I)

7: Î← Î ∪ {I}
8: G ← Optimize 3DGS for k iterations
9: end for

An overview of our method is given in Fig 1 and Alg 1. We initialize GScenes with an incomplete
dense Gaussian point cloud reconstruction from sparse input images using MASt3R (Leroy et al.,
2024) and 1k iterations of 3DGS. Note that InstantSplat (Fan et al., 2024) proposes the same pipeline
for sparse-view reconstruction, but with a DUSt3R initialization. We choose MASt3R to initialize
scene geometry instead due to its superior performance in the sparse-view setting. We use this
incomplete Gaussian scene representation as an implicit geometric prior and sample novel views
along a smooth B-spline trajectory fitted to training views. An example trajectory is shown in
Fig 2. We then use our RGBD diffusion prior to synthesize plausible novel views. In addition to
CLIP features of source images for context and plücker embeddings of source and target cameras
for geometric conditioning, we devise a novel 3DGS confidence measure to effectively guide our
diffusion model towards empty regions and potential artifacts in a novel view render. We then run
10k iterations of 3DGS optimization, sampling a novel view before each densification step (Fu et al.,
2023) to obtain our final scene representation.

Gaussian Point Cloud Initialization The MASt3r pipeline gives us a pixel-aligned dense-stereo
point cloud P ∈ R

S×3, camera intrinsics {Ki ∈ R
3×3}Mi=1 and extrinsics {Ei = [Ri|Ti]}

M
i=1

for our M input images. Nevertheless, both P and the estimated poses demonstrate sub-optimal
alignment compared to those generated by COLMAP (Schönberger and Frahm, 2016) from the dense
observation dataset. Consequently, similar to the approach in InstantSplat, we initialize 3D Gaussians
at each location in the globally aligned point cloud P. We then jointly optimize both the Gaussian
attributes and camera parameters over the 1k iterations without incorporating any form of Adaptive
Density Control.

2.2 RGBD DIFFUSION PRIORS FOR NVS

Reconstructing complete 3D scenes from sparse observations requires inferring content in unobserved
regions—a fundamental challenge that geometric regularization and 3D priors alone cannot adequately
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(a) Optimized Training Poses from MASt3R +
3DGS (b) NVS cameras with B-spline of degree 5

Figure 2: Camera Trajectory Visualization for Novel View Synthesis in pose-free sparse-view setting.

address. We introduce a diffusion-based generative approach that leverages 2D image priors to
synthesize plausible content in these regions.

2.2.1 GENERATIVE MODEL ARCHITECTURE

Despite our initial geometric reconstruction, sparse input views inevitably result in regions with
no Gaussian primitives (“0-Gaussians”), causing empty areas and artifacts in novel views. Unlike
regularization-based methods that merely constrain optimization without generating content, our
approach directly synthesizes missing scene details.

Our model comprises:

• A variational autoencoder (encoder E , decoder D) operating in a compressed latent space

• A UNet denoiser ϵθ predicting noise in diffused latent zt

• Multi-modal conditioning incorporating RGBD renders, confidence maps, semantic context,
and geometric information

The UNet ϵθ receives four inputs: an artifact-laden RGBD image Î , a confidence map C identify-
ing unreliable regions, CLIP features cclip providing semantic context, and camera encodings cgeo

establishing geometric relationships between views.

2.2.2 MULTI-MODAL CONDITIONING

We initialize ϵθ with Stable-Diffusion-2 weights (Rombach et al., 2022) and expand the first convo-
lutional layer to accept additional inputs by concatenating the noisy latent zt, the encoded RGBD

image E(Î), the confidence-weighted encoded image E(Î · C) and the downsampled confidence map

Ĉ. To ensure view coherence and geometric consistency, we incorporate:

Semantic Context: CLIP features cclip ∈ R
M×d from source images serve as semantic anchors,

ensuring generated content remains consistent with observed scene elements.

Geometric Information: For each camera with center o and forward axis d, we compute its plücker
coordinates r = (d,o× d) ∈ R

6 and apply frequency encoding for obtaining higher-dimensional
features:

r 7→ [r, sin(f1πr), cos(f1πr), · · · , sin(fKπr), cos(fKπr)] (1)

where K = 6 is the number of Fourier bands, and fk are equally spaced frequencies. This yields a

78-dimensional embedding for each camera (cgeo ∈ R
(M+1)×78), capturing geometric relationships

between viewpoints. Plücker coordinates were originally introduced by LFNs (Sitzmann et al., 2021)
for per-pixel parameterization of a ray. We instead obtain a single representation per camera using
extrinsics Ei for obtaining o and d.
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2.2.3 PARAMETER-EFFICIENT FILM CONDITIONING

We employ Feature-wise Linear Modulation (FiLM) (Perez et al., 2018) instead of cross-attention for
incorporating context and geometry information, achieving both computational efficiency and strong
performance:

1. Process context and geometry through self-attention to capture inter-view relationships:

ciattn = SelfAttention(ci); i ∈ {clip, geo} (2)

2. Generate scaling and shifting parameters via layer-specific networks:

γ(l), β(l) = FC(l)(ciattn) (3)

3. Modulate feature maps through element-wise operations:

F
(l)
mod = γ(l) · F(l) + β(l) (4)

Critically, we apply FiLM modulation only to down and mid blocks of the UNet—not up blocks—
based on empirical evidence showing this selective application yields optimal results (Fig. 3).

Our FiLM-based approach requires only 8.14M parameters (7.38M for CLIP features, 758K for pose
embeddings) compared to 29.8M for an equivalent cross-attention implementation—a 3× reduction
while maintaining comparable quality, enabling more efficient training and faster inference during
iterative reconstruction.

MASt3R + 3DGS Diffusion Sample (UpBlock Conditioning) Diffusion Sample (Ours)
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Figure 3: Incorporating context and geometry conditioning in the up blocks of the UNet negatively
impacts latent and subsequent image reconstruction.

2.3 PIXEL-ALIGNED CONFIDENCE MAP

To guide our diffusion model in identifying problematic regions in novel views, we introduce a
pixel-aligned confidence measure combining transmittance with Gaussian density:

Ci = − log(Ti + ϵ)× ncontrib (5)

where Ti =
∏

i(1− αi) represents light transmission without Gaussian interaction, ncontrib counts
contributing 3D Gaussians, and ϵ > 0 prevents logarithmic singularities. This formulation captures
two complementary reliability signals: (1) low transmittance indicates significant Gaussian interac-
tions, suggesting higher rendering confidence, and (2) consensus among multiple Gaussians validates
pixel reliability through primitive agreement.
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Unlike 3DGS-Enhancer (Liu et al., 2024), which assumes well-reconstructed areas contain small-
scale Gaussians, our measure remains effective for monotonous textures where fine-grained Gaussian
representation is unnecessary. Fig. 4 demonstrates our approach accurately identifies both empty
regions and reconstruction artifacts while avoiding false positives. The significance of this improved
confidence measure is evident in Fig. 5, where models trained with previous confidence formulations
produce implausible novel views due to misleading confidence signals.
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Figure 4: Confidence Measure comparison with 3DGS-Enhancer (Liu et al., 2024). Our confidence
map accurately identifies artifacts and 0-Gaussian regions in the sparse-view (darker pixels) while
(Liu et al., 2024) incorrectly attributes high confidence to regions with overlap of small-scale
Gaussians. NVS render from a densely fitted 3DGS representation is provided for reference.
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Figure 5: Conditioning the UNet with an inaccurate confidence measure( (Liu et al., 2024)) leads to
implausible NVS.

2.4 SYNTHETIC RGBD DATASET CREATION

For training the additional weights in ϵθ for RGBD image-to-image diffusion, we rely on a set

X = {(Ii, Îi, Ci, ciclip, c
i
geo)

N
i=1}, each containing a clean RGBD image Ii, an RGBD image
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Figure 6: Training our RGBD diffusion model. Pairs of RGBD clean images and images with
artifacts are obtained from 3DGS fitted to sparse and dense observations, respectively, across 1043
scenes. CLIP features provide semantic scene context, plücker embeddings of source and target
cameras provide geometry information, and a confidence map additionally detects empty regions and
artifacts in the artifact image. The Stable Diffusion UNet (Rombach et al., 2022) is then fine-tuned
with a dataset of 171, 461 samples.

with artifacts Îi and the corresponding confidence map Ci, CLIP features of source images

ciclip ∈ R
M×768, and plücker embeddings of source and target cameras cigeo ∈ R

(M+1)×78, to
“teach” the diffusion model how to inpaint missing details and detect Gaussian artifacts guided by
the confidence map, context and geometry features and generate a clean version of the conditioning
image. For this, we build a dataset generation pipeline comprising a high-quality 3DGS model
fitted to dense views, a low-quality 3DGS model fitted to few views, and camera interpolation and
perturbation modules to use supervision of the high-quality model at viewpoints beyond ground
truth camera poses. The fine-tuning setup is illustrated in Fig. 6. For a given scene, we fit sparse

models for M ∈ {3, 6, 9, 18} number of views. We render Ii using the high-quality model and Îi,
Ci using the low-quality model. We save the CLIP features cclip and plücker embeddings of the
M sparse views and 1 target view per sample for conditioning ϵθ .

2.5 DEPTH-AUGMENTED AUTOENCODER FINETUNING

For encoding and decoding RGBD images, we customize a Variational AutoEncoder by introducing
additional channels in the first and last convolutional layers of the Stable Diffusion VAE. A similar
approach was followed by Stan et al. (2023), where their KL-autencoder was finetuned with triplets
containing RGB images, depth maps, and captions to train the weights in the new channels. However,
the depth maps used for fine-tuning this VAE were estimated using MiDaS(Ranftl et al., 2020), which
are usually blurry monocular depth estimates. As such, reconstructing RGBD images using this VAE
produces depth maps with extreme blur - not ideal for a scene reconstruction problem. Hence, we
further finetune this VAE with our synthetic dataset, which contains depth maps rendered by the
differentiable 3DGS rasterizer, giving accurate pixel depth with high-frequency details. Specifically,
we use the following objective:

Lautoencoder =min
E,D

max
Dψ

(

Lrec(x,D(E(x)))− Ladv(D(E(x))) + log(Dψ(x)) + Lreg(x; E , D)
)

(6)

where Lrec is a combination of L1, perceptual losses for the RGB channels, and Pearson Correlation
Coefficient (PCC), TV regularization losses for the depth channels. Ladv is the adversarial loss, Dψ

is a patch-based discriminator loss, and Lreg is the KL-regularisation loss. The incorporation of
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PCC and TV terms for the depth channels leads to better retention of high-frequency details in the
reconstructed depth map, as observed in Fig 7. We finetune this VAE on a subset of our dataset for
5000 training steps with batch size 16 and learning rate 1e-05.

2.5.1 UNET FINETUNING

With our finetuned autoencoder, we next train the UNet with the frozen VAE on X with the following
objective:

L = Ei∼U(N),ϵ∼N (0,I),t

[

∥ϵt − ϵθ(z
i
t; t, E(Î), Ĉ, E(

ˆI · C), cclipattn, c
geo
attn)∥

2
2

]

(7)
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Figure 7: RGBD reconstruction comparison of our finetuned VAE with the LDM3D VAE (Stan et al.,
2023). Unlike LDM3D, our VAE finetuned on a synthetic dataset preserves sharp details and edges
of the input depth map while also preventing color artifacts in RGB.

2.5.2 RGBD NOVEL VIEW SYNTHESIS

At inference time, given a render and depth map with artifacts, and confidence map, CLIP features
and camera embeddings for conditioning, the finetuned UNet ϵθ learns to predict the noise in latent
zt according to t ∼ U [tmin, tmax] as:
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ϵ̂t = ϵθ(zt; t,∅,∅,∅, c
clip
attn, c

geo
attn)

+ sI(ϵθ(zt; t, E(Î), Ĉ, E( ˆI · C), cclipattn, c
geo
attn)− ϵθ(zt; t,∅, Ĉ,∅, c

clip
attn, c

geo
attn))

+ sC(ϵθ(zt; t,∅, Ĉ,∅, c
clip
attn, c

geo
attn)− ϵθ(zt; t,∅,∅,∅, c

clip
attn, c

geo
attn))

(8)

where sI and sC are the RGBD image and confidence map guidance scales, dictating how strongly the

final multistep reconstruction agrees with the RGBD render Î and the confidence map C, respectively.
After k = 20 DDIM (Song et al., 2021) sampling steps, we obtain our final RGBD render by decoding
the denoised latent as xπ = [Iπ, Dπ] = D(z0).

2.6 SCENE RECONSTRUCTION WITH DIFFUSION PRIORS

Our diffusion priors infer plausible detail in unobserved regions. Despite view conditioning using
pose embeddings, the generated images at novel poses lack complete 3D consistency. For this, we
devise an iterative strategy where we first sample novel views along a B-spline trajectory fitted to
the training views. We initialize the Gaussian optimization with the set of Gaussians G fitted to the
training views (Sec 2.1). Each novel view is added to the training stack at the beginning of every
densification step to encourage the optimization to adjust to the distilled scene priors. At every
iteration, we sample either an observed or unobserved viewpoint from the current training stack.
We bring back Adaptive Density Control to encourage densification of Gaussians in 0-Gaussian
regions. We employ the 3DGS objective for the training views. For novel views, we employ the
SparseFusion Zhou and Tulsiani (2023) objective in the RGB space (Wu et al., 2024) and a PCC loss
for the rendered and denoised depths.

Lsample(ψ) = Eπ,t

[

w(t)(∥Iπ − Îπ∥1 + Lp(Iπ, Îπ))
]

+ wd · PCC(Dπ, D̂π) (9)

where Lp is the perceptual loss Zhang et al. (2018), w(t) a noise-dependent weighting function,

Iπ, Dπ are the rendered image and depth at novel viewpoint π, and Îπ, D̂π are their rectified versions

obtained with our diffusion prior. The PCC loss is defined as PCC(Dπ, D̂π) = 1− Cov(Dπ,D̂π)
σDπσD̂π

.

2.7 TEST-TIME POSE ALIGNMENT

GScenes reconstructs a plausible 3D scene from unposed source images. However, reconstruction
with few views is inherently ambiguous as several solutions can satisfy the train view constraints.
Hence, the reconstructed scene would most likely be quite different from the actual scene from which
M views were sampled. Hence, for a given set of test views, following prior work (Fan et al., 2024;
Jiang et al., 2024), we freeze the Gaussian attributes and optimize the camera pose for each target
view by minimizing a photometric loss between the rendered image and test view. Following this
alignment step performed for 500 iterations per test image, we evaluate the NVS quality.

3 EXPERIMENTS

We compare GScenes with state-of-the-art pose-free and pose-required sparse-view reconstruction
methods in Fig 8, 9 and Table 1, 2. We also ablate the different components and design choices of
our diffusion model.

3.1 EXPERIMENTAL SETUP

Evaluation Dataset We evaluate GScenes on the 9 scenes of the MipNeRF360 dataset (Barron
et al., 2022), and 15 scenes (out of 140) of the DL3DV-10K benchmark dataset Ling et al. (2024).
For MipNeRF360, We pick the M -view splits as proposed by ReconFusion Wu et al. (2024) and
CAT3D Gao* et al. (2024) and evaluate all baselines on the official test views where every 8th

image is held out for testing. For DL3DV-10K scenes, we create M -view splits using a greedy
view-selection heuristic for maximizing scene coverage given a set of dense training views, similar
to the heuristic proposed in Wu et al. (2024). For test views, we hold out every 8th image as in
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Figure 8: Qualitative comparison of GScenes with few-view methods. Our approach consistently
fairs better in recovering image structure from foggy geometry, where baselines typically struggle
with “floaters” and color artifacts.

MipNeRF360. Additionally, we pick the plant scene of CO3D for qualitative comparison with
ReconFusion and CAT3D.

Fine-tuning Dataset We fine-tune our diffusion model on a mix of 1043 scenes encompassing
Tanks and Temples (Knapitsch et al., 2017), CO3D (Reizenstein et al., 2021), Deep Blending (Hedman
et al., 2018), and the 1k subset of DL3DV-10K Ling et al. (2024) to obtain a total of 171, 461 data
samples. We first train 3DGS on sparse and dense subsets of each scene for M ∈ {3, 6, 9, 18}. For
M > 18, novel view renders and depth maps mostly show Gaussian blur as artifacts. Finetuning this
model takes about 4-days on a single A6000 GPU.

Metrics Our quantitative metrics are used to evaluate two tasks - quality of novel views post
reconstruction and camera pose estimation. For the former, we compute 3 groups of metrics -
FID (Heusel et al., 2017) and KID (Bińkowski et al., 2018) due to the generative nature of our
approach, perceptual metrics LPIPS (Zhang et al., 2018) and DISTS (Ding et al., 2020) to measure
similarity in image structure and texture in the feature space, and pixel-aligned metrics PSNR and
SSIM. However, PSNR and SSIM are not suitable evaluators of generative techniques (Chan et al.,
2023; Sargent et al., 2024) as they favor pixel-aligned blurry estimates over high-frequency details.

Baselines We compare our approach against 8 baselines. FreeNeRF (Yang et al., 2023), RegN-
eRF (Niemeyer et al., 2022), DiffusioNeRF (Wynn and Turmukhambetov, 2023) are pose-required
few-view regularization methods based on NeRFs. ZeroNVS (Sargent et al., 2024) reconstructs a com-
plete 3D scene from a single image using a novel camera normalization scheme and anchored SDS
loss. We use the ZeroNVS∗ baseline introduced in ReconFusion (Wu et al., 2024), designed to adapt
ZeroNVS to multi-view inputs. ReconFusion and CAT3D are state-of-the-art multi-view conditioned
diffusion models for sparse-view reconstruction. We use the reported average performance on the 9
scenes of MipNeRF360 with classical metrics - PSNR, SSIM, and LPIPS for quantitative comparison
and pick the relevant scenes and test views from the two papers for qualitative comparison. For
pose-free methods, we pick our 3D reconstruction engine (MASt3R + 3DGS) and COGS (Jiang et al.,
2024) and show that our approach outperforms them in NVS both qualitatively and quantitatively.
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Figure 9: Qualitative comparison of GScenes with few-view methods on the DL3DV benchmark.
Our method achieves plausible reconstruction in unobserved areas of complex scenes where even
posed reconstruction techniques struggle.
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Figure 10: Ablation Study with the 3-view splits of Bonsai and Treehill scenes from MipNeRF360.
Images above are samples from different variants of our diffusion model depending on the condition-
ing.
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3.2 IMPLEMENTATION DETAILS

Our framework is implemented in PyTorch 2.3.1 on single A5000/A6000 GPUs. Images and depth
maps are rendered at 400-600 pixels to align with Stable Diffusion’s resolution. The diffusion model
is finetuned for 100k iterations (batch size 16, learning rate 1e−4) with conditioning element dropout
probability of 0.05 for classifier-free guidance.

Following Fan et al. (2024), we fit 3D Gaussians to sparse inputs and MASt3r point clouds for 1k
iterations to obtain G. We use classifier-free guidance scales sI = sC = 3.0 and sample with k = 20
DDIM steps. We linearly decay wd from 1 to 0.01 and Lsample weight from 1 to 0.1 over 10k
iterations. GScenes completes full 3D reconstruction in approximately 5 minutes on a single A6000
GPU.

3.3 COMPARISON RESULTS

Table 1: Quantitative comparison with state-of-the-art sparse-view reconstruction techniques on
classical metrics.

PSNR ↑ SSIM ↑ LPIPS ↓
Method 3-view 6-view 9-view 3-view 6-view 9-view 3-view 6-view 9-view

FreeNeRF 11.888 12.877 13.680 0.146 0.180 0.197 0.675 0.654 0.638

RegNeRF 12.297 13.209 13.802 0.147 0.170 0.180 0.668 0.656 0.625

DiffusioNeRF 13.134 16.191 16.732 0.167 0.283 0.337 0.680 0.543 0.530

ZeroNVS* 11.902 11.789 11.729 0.142 0.133 0.128 0.710 0.702 0.694

ReconFusion 15.50 16.93 18.19 0.358 0.401 0.432 0.585 0.544 0.511

CAT3D 16.62 17.72 18.67 0.377 0.425 0.460 0.515 0.482 0.460

MASt3R + 3DGS 13.657 14.733 14.926 0.222 0.265 0.246 0.603 0.540 0.590

COGS 12.267 12.428 13.030 0.173 0.186 0.201 0.616 0.632 0.596

GScenes 14.976 15.972 16.563 0.284 0.295 0.314 0.593 0.517 0.577

Table 2: Quantitative comparison with few-view reconstruction techniques on metrics suited for
generative reconstruction.

FID ↓ KID ↓ DISTS ↓
Method 3-view 6-view 9-view 3-view 6-view 9-view 3-view 6-view 9-view

FreeNeRF 342.484 343.378 334.805 0.252 0.262 0.268 0.376 0.363 0.357

RegNeRF 343.593 335.606 325.228 0.260 0.276 0.257 0.387 0.383 0.371

DiffusioNeRF 323.047 269.995 246.265 0.230 0.166 0.141 0.395 0.325 0.328

ZeroNVS* 356.395 350.362 343.930 0.283 0.294 0.299 0.433 0.427 0.413

MASt3R + 3DGS 268.526 226.110 242.853 0.191 0.131 0.140 0.294 0.298 0.310

COGS 231.274 274.827 248.220 0.136 0.183 0.152 0.288 0.310 0.286

GScenes 253.659 220.292 210.255 0.176 0.098 0.106 0.284 0.245 0.241

We report qualitative and quantitative comparisons of GScenes against all related baselines in Fig 8
and 9 and Tables 1 and 2. Out of the 8 baselines, only MASt3R + 3DGS and COGS are pose-free
techniques, while the remaining require ground truth poses for both training and evaluation. Note
that COGS relies on ground truth camera intrinsics while GScenes and MASt3R + 3DGS do not. On
the classical metrics (Tab 1), we are third behind the 2 SOTA posed reconstruction methods - CAT3D
and ReconFusion. Except for FID and KID on the 3-view split, we outperform all related baselines in
Table 2. Due to the unavailability of open-source code, evaluating ReconFusion and CAT3D on these
measures is unfortunately not possible.

3.4 ABLATION STUDIES

In Fig 10, we thoroughly ablate different components of our diffusion model. We pick the bonsai
and treehill scenes and their 3-view splits for this experiment. The leftmost column shows the
initial novel-view render obtained from the 3D reconstruction pipeline (MASt3r + 3DGS). The
Base variant only performs image-to-image diffusion with no other conditioning, and this already
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provides a strong baseline for inpainting and artifact elimination in novel-view renders. Without CLIP
context guidance, the model fails to adhere to the semantics of the input images when inpainting
missing details. Without our confidence measure, the model typically fails to differentiate between
image structures and artifacts, often producing implausible images despite context and geometry
conditioning. Additionally, we train a Cross-Attn variant where context and geometry conditionings
are incorporated using cross-attention instead of FiLM modulation layers in the down and middle
blocks of the UNet. Our method achieves similar performance with more than 2x fewer additional
trainable parameters.

3.5 QUALITATIVE COMPARISON WITH RECONFUSION / CAT3D
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Figure 11: Qualitative comparison of GScenes with ReconFusion and CAT3D (posed techniques).
Despite being a pose-free pipeline built with weaker diffusion priors, our method achieves competitive
NVS quality with SOTA sparse-view reconstruction techniques. No image available for CAT3D in
the last row, hence kept blank.

In Fig 11, we provide an additional qualitative comparison with ReconFusion and CAT3D. Their
code is not available, and hence, we could not perform an evaluation across all test scenes in their
paper. From the figures in the 2 papers, we pick the relevant test views for the treehill, flowers, bicycle
scenes in MipNeRF360, and the plant scene from CO3Dv2 to show how GScenes compares with their
reconstruction. We use the same training views as open-sourced in their data splits. Despite being a
pose-free pipeline using weaker generative priors, we observe that GScenes compares competitively
with both methods.

4 CONCLUSION

In this work, we present GScenes where we integrate an image-to-image RGBD diffusion model with
a pose-free reconstruction pipeline in MASt3R to reconstruct a 360◦ 3D scene from a few uncalibrated
2D images. We introduce context and geometry conditioning through FiLM layers achieving similar
performance as a cross-attention variant. We also introduce a pixel-aligned confidence measure
to further guide the diffusion model in uncertain regions with missing details and artifacts. Our
experiments show that GScenes outperforms existing pose-free reconstruction methods in scene
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reconstruction and performs competitively with state-of-the-art posed sparse-view reconstruction
methods.

REFERENCES

Jonathan T. Barron, Ben Mildenhall, Dor Verbin, Pratul P. Srinivasan, and Peter Hedman. Mip-nerf 360:
Unbounded anti-aliased neural radiance fields. In CVPR, 2022. 9

Wenjing Bian, Zirui Wang, Kejie Li, Jiawang Bian, and Victor Adrian Prisacariu. Nope-nerf: Optimising neural
radiance field with no pose prior. 2023. 20
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A PROBLEM INTRODUCTION AND DISCUSSION

Obtaining high-quality 3D reconstructions or novel views from a sparse set of images has been a
long-standing goal in computer vision. Recent methods for sparse-view reconstruction often employ
generative, geometric, or semantic priors to stabilize the optimization of NeRFs (Mildenhall et al.,
2020) or Gaussian splats (Kerbl et al., 2023) in highly under-constrained scenarios. However, they
typically assume access to accurate intrinsic and extrinsic parameters, often derived from dense
observations. This reliance on ground-truth poses is a restrictive assumption, making these methods
impractical for real-world applications. Moreover, pose estimation from sparse views is error-prone;
both traditional Structure from Motion approaches and recent 3D foundational models (Wang et al.,
2024; Leroy et al., 2024) struggle with insufficient matching features between image pairs. In
response, recent pose-free approaches using 3D Gaussian splatting (3DGS) integrate monocular depth
estimation (Ranftl et al., 2020), 2D semantic segmentation (Kirillov et al., 2023), or 3D foundational
priors (Wang et al., 2024), optimizing 3D Gaussians and camera poses together during training.
However, these methods are typically designed for scenes with high view overlap, and they often
fail to reconstruct complex, large-scale 360◦ scenes with sparse coverage. Additionally, despite
extensive regularization to prevent overfitting, the limited observations impede coherent synthesis of
unobserved regions. This challenge underlines the need for additional generative regularization to
enable accurate extrapolation and complete scene reconstruction.

Despite several previous attempts (Deng et al., 2022; Roessle et al., 2022; Li et al., 2024; Xiong et al.,
2023; Zhu et al., 2023; Chung et al., 2023; Wang et al., 2023a; Jain et al., 2021; Niemeyer et al.,
2022; Wynn and Turmukhambetov, 2023) in the field of sparse novel view synthesis, only a few -
COGS Jiang et al. (2024), InstantSplat (Fan et al., 2024) have been successful in dealing with the
problem without precomputed camera parameters. These methods jointly optimize Gaussians and
camera parameters during training and use different 2D priors for regularization. Although they find
success in artifact and blur reduction, they are less effective in 360◦ scene reconstruction due to a
lack of generative priors.

Reconstructing full 360◦ scenes from limited views requires robust priors, such as those from powerful
2D image or video diffusion models (Nichol et al., 2022; Ramesh et al., 2022; Saharia et al., 2022;
Rombach et al., 2022) that encode common 3D structures. Recent methods (Liu et al., 2023; Sargent
et al., 2024; Wu et al., 2024; Gao* et al., 2024; Blattmann et al., 2023) incorporate view and context
conditioning into these models, fine-tuning them on extensive real-world and synthetic multi-view
datasets to support radiance field optimization. This enables realistic extrapolation into unobserved
areas of complex 360◦ scenes. However, these models depend on accurate pose information, making
them unsuitable for scenarios where pose estimates deviate significantly from ground truth, leading to
misaligned view generation. To our knowledge, only Gaussian Object (Yang et al., 2024), iFusion (Wu
et al., 2023), and UpFusion (Nagoor Kani et al., 2024) provide pose-free generative solutions, but
they are designed specifically for 3D object reconstruction, not large-scale scenes.

In the absence of poses estimated from dense observations, we instead rely on recent 3D foundational
priors Leroy et al. (2024) for scene initialization from sparse views and encode its estimated cameras
for conditioning a Stable Diffusion UNet Rombach et al. (2022) during both training and evaluation.
We also augment the UNet with additional channels for context, 3DGS render, depth maps with
Gaussian artifacts, and a pixel-aligned confidence map capturing missing regions and reconstruction
artifacts in the RGBD image. During inference, the model predicts a clean, inpainted version of the
conditioning artifact image and an aligned depth map. This formulation prevents the requirement of
accurate ground truth poses for pose conditioning of a multiview diffusion model. This also alleviates
dependency on large-scale 3D datasets which are usually synthetic and low quality compared to
real-world scenes.

We present GScenes, an efficient method that uses 3D foundational (Leroy et al., 2024) and
RGBD diffusion priors for pose-free sparse-view reconstruction of complex 360◦ scenes. We
first estimate a point cloud and approximate scene intrinsics and extrinsics using MASt3R and
then jointly optimize both Gaussians and camera parameters with just a few iterations of 3DGS.
We then generate novel views by sampling from a B-spline trajectory fitted to the training views.
Resulting renders and depth maps contain missing details and Gaussian artifacts that are refined
by our diffusion prior and then used to further optimize the 3D Gaussians and camera poses.
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Despite using weaker generative priors compared to state-of-the-art pose-dependent methods, we
show competitive qualitative and quantitative performance with ReconFusion (Wu et al., 2024)
and CAT3D (Gao* et al., 2024) and comprehensively outperform all other pose-dependent and
pose-free techniques on reconstruction quality. Our method leverages stronger priors than simple
regularizers while not relying on million-scale multi-view data or huge compute resources to train
a 3D-aware diffusion model. We also ablate all conditioning elements in our diffusion model
and identify which conditioning features contribute the most towards coherent NVS from sparse views.

B RELATED WORK

Reconstructing 3D scenes from limited observations requires generative priors or, more specifically,
inpainting missing details in unseen regions in 3D and removing artifacts introduced through observ-
ing scene areas from a few observations. Our work builds on recent developments in 2D diffusion
priors for 3D reconstruction (Paul et al., 2024), where knowledge learned from abundant 2D datasets
is lifted to 3D for rectifying novel views rendered by sparse 3D models. Next, we discuss how our
work is related to the current line of research.

Regularization Techniques Both NeRF and 3DGS rely on hundreds of scene captures for photore-
alistic novel view synthesis. When the input set becomes sparse, the problem becomes ill-posed, as
several simultaneous 3D representations can agree with the training set. Regularization techniques
are amongst the earliest techniques to address this limitation. Typical methods leverage depth from
Structure-from-Motion (SfM)Deng et al. (2022); Roessle et al. (2022), monocular estimationLi et al.
(2024); Xiong et al. (2023); Zhu et al. (2023); Chung et al. (2023), or RGB-D sensors Wang et al.
(2023a). DietNeRF Jain et al. (2021) uses a semantic consistency loss based on CLIP Radford
et al. (2021) features, while FreeNeRF Yang et al. (2023) regularizes the frequency range of NeRF
inputs. Approaching generative priors, RegNeRF Niemeyer et al. (2022) and DiffusioNeRF Wynn
and Turmukhambetov (2023) maximize the likelihoods of rendered patches using normalizing flows
or diffusion models, respectively. However, such techniques usually fail under extreme sparsity like
3, 6, or 9 input images for a 360◦ scene due to weaker priors. Generative priors can be viewed as
a stronger form of regularization as they provide extrapolation capabilities for inferring details in
unknown parts of a scene.

Generalizable Reconstruction When only a few or a single view is available, regularization
techniques are often insufficient to resolve reconstruction ambiguities. To address this, recent
research focuses on training priors for novel view synthesis across multiple scenes. pixelNeRF Yu
et al. (2021) uses pixel-aligned CNN features as conditioning for a shared NeRF MLP, while other
approaches Trevithick and Yang (2021); Chen et al. (2021); Henzler et al. (2021); Lin et al. (2023b)
condition NeRF on 2D or fused 3D features. Further priors have been learned on triplanes Irshad et al.
(2023), voxel grids Guo et al. (2022), and neural points Wewer et al. (2023). Leveraging 3D Gaussian
Splatting Kerbl et al. (2023), methods like pixelSplat Charatan et al. (2024) and MVSplat Chen
et al. (2024) achieve state-of-the-art performance in stereo view interpolation and real-time rendering.
However, these regression-based models often produce blurry outputs under high uncertainty. In
contrast, generative methods like GeNVS Chan et al. (2023) and latentSplat Wewer et al. (2024) aim
to sample from multi-modal distributions, offering better handling of ambiguous novel views.

Generative Priors for NVS For ambiguous novel views, predicting expectations over all
reconstructions may be unreliable. Consequently, regression approaches fall short, whereas
generative methods attempt to sample from a multi-modal distribution.

While diffusion models have been applied directly on 3D representations like triplanes Shue et al.
(2023); Chen et al. (2023a), voxel grids Müller et al. (2023), or (neural) point clouds Zhou et al.
(2021); Melas-Kyriazi et al. (2023); Schröppel et al. (2024), 3D data is scarce. Given the success
of large-scale diffusion models for image synthesis, there is a great research interest in leveraging
them as priors for 3D reconstruction and generation. DreamFusion Poole et al. (2023) and follow-
ups Wang et al. (2023b); Lin et al. (2023a); Chen et al. (2023b); Deng et al. (2023); Tang et al.
(2024) employ score distillation sampling (SDS) to iteratively maximize the likelihood of radiance
field renderings under a conditional 2D diffusion prior. For sparse-view reconstruction, existing
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approaches incorporate view-conditioning via epipolar feature transform Zhou and Tulsiani (2023),
cross-attention to encoded relative poses Liu et al. (2023); Sargent et al. (2024), or pixelNeRF Yu
et al. (2021) feature renderings Wu et al. (2024). However, this fine-tuning is expensive and requires
large-scale multi-view data, which we circumvent with GScenes.

Pose-Free 3D Reconstruction For building a generalizable sparse-view reconstruction method, the
assumption of camera poses during inference limits applications to real-world scenarios where usually
only an uncalibrated set of 2D images are available with no known camera extrinsics or intrinsics.
Several recent works (Jiang et al., 2024; Fan et al., 2024) have attempted to solve reconstruction in
a pose-free setting by jointly optimizing poses and NeRF or 3D Gaussian parameters during scene
optimization. These methods typically outperform previous techniques (Chen and Lee, 2023; Lin
et al., 2021; Bian et al., 2023; Fu et al., 2023) where reconstruction is done in two stages - first
estimating poses and then optimizing the 3D representation. However, errors in the initial pose
estimation harm subsequent scene optimization, resulting in inferior NVS quality. In our work, we
use the MASt3R Leroy et al. (2024) pipeline with 3DGS for predicting 3D Gaussians and camera
parameters in a global coordinate system from a set of unposed 2D images.

Our work is most closely related to Sp2360 (Paul et al., 2024) where an instruction-following RGB
diffusion model is finetuned for the task of rectifying novel views rendered by 3DGS fitted to sparse
observations. We extend the problem setting to the more challenging pose-free scenario and jointly
model RGB and depth to aid optimization of 3D Gaussians during the distillation phase. Additionally,
we introduce CLIP context and pose conditioning through FiLM layers (Perez et al., 2018) and a
pixel-aligned confidence measure for more accurate novel view synthesis.

C LIMITATIONS & FUTURE WORK

Table 3: Pose estimation accuracy with GScenes. SfM-poses for training views estimated from the
full observation set are used as ground truth. We report errors in camera rotation and translation using
Absolute Trajectory Error (ATE) and Relative Pose Error (RPE) as in Bian et al. (2023). Despite the
DUSt3r initialization of camera extrinsics and subsequent pose optimization, there are large errors
w.r.t COLMAP poses of the dense observation set, harming test-pose alignment and subsequent NVS
quality.

RPEt ↓ RPEr ↓ ATE ↓

3-view 6-view 9-view 3-view 6-view 9-view 3-view 6-view 9-view

GScenes 37.684 27.893 30.916 124.501 58.915 40.424 0.261 0.294 0.266

GScenes is a first step towards a generative solution for pose-free sparse-view reconstruction of
large complex scenes. However, it is not free of its fair share of limitations. The quality of the final
reconstruction depends heavily on the initial relative pose estimation by the MASt3r pipeline, and
even though the poses are further optimized jointly with Gaussian attributes during training, there are
still large differences with the ground truth COLMAP poses estimated from dense views as we show
in Tab 3. This limits fair comparison with posed reconstruction methods, as even the test-time pose
alignment step (Sec 3.5) cannot compensate for the initial errors in the pipeline. Our diffusion model,
much like related methods, is not agnostic to the 3D representation from which novel view renders,
depth, and confidence maps are obtained for fine-tuning the diffusion model for 3D-aware sparse-view
NVS. Moreover, our diffusion model trained with 3DGS renders with MASt3R initialization would
not be able to rectify novel views from a 3DGS representation with SfM initialization due to the
slight difference in the distribution of rendered images. To ensure multiview consistency across all
synthesized views, we employ view conditioning in the form of plucker embeddings and use a fixed
noise latent across all novel views for multistep reconstruction. However, this does not alleviate
the multiview consistency issue completely as novel views are synthesized in an autoregressive
manner and not simultaneously synthesized like in video diffusion models. We aim to address these
limitations of our diffusion model in future work.

20


	Introduction
	Method
	Algorithm Overview
	RGBD Diffusion Priors for NVS
	Generative Model Architecture
	Multi-modal Conditioning
	Parameter-Efficient FiLM Conditioning

	Pixel-Aligned Confidence Map
	Synthetic RGBD Dataset Creation
	Depth-Augmented Autoencoder Finetuning
	UNet Finetuning
	RGBD Novel View Synthesis

	Scene Reconstruction with Diffusion Priors
	Test-time Pose Alignment

	Experiments
	Experimental Setup
	Implementation Details
	Comparison Results
	Ablation Studies
	Qualitative Comparison with ReconFusion / CAT3D

	Conclusion
	Problem Introduction and Discussion
	Related Work
	Limitations & Future Work

